A Probabilistic Background Model for Tracking
نویسندگان
چکیده
A new probabilistic background model based on a Hidden Markov Model is presented. The hidden states of the model enable discrimination between foreground, background and shadow. This model functions as a low level process for a car tracker. A particle filter is employed as a stochastic filter for the car tracker. The use of a particle filter allows the incorporation of the information from the low level process via importance sampling. A novel observation density for the particle filter which models the statistical dependence of neighboring pixels based on a Markov random field is presented. The effectiveness of both the low level process and the observation likelihood are demonstrated.
منابع مشابه
Multiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملAnalysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملBayesian Modality Fusion: Probabilistic Integration of Multiple Vision Algorithms for Head Tracking
We describe a head-tracking system that harnesses Bayesian modality fusion, a technique for integrating the analyses of multiple visual tracking algorithms within a probabilistic framework. At the heart of the approach is a Bayesian network model that includes random variables that serve as context-sensitive indicators of reliability of the different tracking algorithms. Parameters of the Bayes...
متن کاملLearning Image Statistics for Bayesian Tracking
This paper describes a framework for learning probabilistic models of objects and scenes and for exploiting these models for tracking complex, deformable, or articulated objects in image sequences. We focus on the probabilistic tracking of people and learn models of how they appear and move in images. In particular, we learn the likelihood of observing various spatial and temporal filter respon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000